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In the article the questions of solvability of boundary value problem for
a homogeneous pseudoparabolic-pseudohyperbolic type integro-differential
equation with degenerate kernels are considered. The Fourier method based
on separation of variables is used. A criterion for the one-valued solvability
of the considering problem is found. Under this criterion the one-valued
solvability of the problem is proved.
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Problem Statement. The partial differential equations of third and fourth
order are important with their physical applications [1–5]. Problems, where the type
of differential equation is changing in the considering domain, have important
applications [6–8]. The mixed type differential equations have been studied by many
authors, in particular in [9–16].

In the present paper we consider the one-valued solvability of nonlocal
problem for a mixed type integro-differential equation with degenerate kernels. So,
in the rectangular domain Ω = {(t,x)| − T < t < T, 0 < x < l} we consider the
following mixed type equation:

Ut −Utxx−Uxx +ν

∫ T

0
K1(t,s)U(s,x)ds = 0, t > 0,

Utt −Uttxx−Uxx +ν

∫ 0

−T
K2(t,s)U(s,x)ds = 0, t < 0,

(1)

where T and l are given positive real numbers; ν is spectral real parameter,
K j(t,s) = a j(t) b j(s), a j(t), b j(s) ∈C[−T ; T ], j = 1,2.

Problem. Find in the domain Ω the function
U(t,x) ∈C

(
Ω
)
∩C1(

Ω∪{x = 0}∪{x = l}
)
∩C1,2(

Ω+

)
∩C2,2(

Ω−
)
∩

∩C1+2
t,x
(
Ω+

)
∩C2+2

t,x
(
Ω−
)
,

satisfying to the Eq. (1) and following conditions:
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0
U(t,x)dt = ϕ(x), 0≤ x≤ l, (2)

U(t,0) =U(t, l) = 0, −T ≤ t ≤ T, (3)

where Cr is a class of functions having continuous derivatives
∂ r

∂ tr ,
∂ r

∂xr ;

Cr,s is a class of functions having continuous derivatives
∂ r

∂ tr ,
∂ s

∂xs ; Cr+s
t,x is a class of

functions having continuous derivatives
∂ r+s

∂ tr∂xs , r = 1,r0, s = 1,s0, r ≤ r0, s ≤ s0

are arbitrary natural numbers, ϕ(x) is given sufficiently smooth function, ϕ(0) =
ϕ(l) = 0,Ω− = {(t,x)|−T < t < 0, 0 < x < l}, Ω+ = {(t,x)|0 < t < T, 0 < x < l},
Ω = {(t,x)|−T ≤ t ≤ T,0≤ x≤ l}.

A Formal Solution of the Boundary Value Problem (1)–(3). Solution of the
Eq. (1) in domain Ω is sought in the form of the following Fourier series:

U(t,x) =

√
2
l

∞

∑
n=1

un(t)sin µnx, (4)

where the functions ϑn(x) =

√
2
l

sin µnx as the eigenfunctions of the spectral

problem ϑ ′′(x)+µ2ϑ(x) = 0, ϑ(0) = ϑ(l) = 0, 0 < µ and form a complete system

of orthonormal functions in L2[0; l], while µn =
πn
l

are the corresponding
eigenvalues and

un(t) =

√
2
l

∫ l

0
U(t,x)sin µnxdx, n = 1,2, . . . (5)

Substituting the series (4) into Eq. (1), we obtain

u′n(t)+λ
2
n un(t) = ν

∫ T

0
a1(t)b1(s)un(s)ds, t > 0, (6)

u′′n(t)+λ
2
n un(t) = ν

∫ 0

−T
a2(t)b2(s)un(s)ds, t < 0, (7)

where λ 2
n =

µ2
n

1+µ2
n
, µn =

πn
l
.

By denoting

αn =
∫ T

0
b1(s)un (s)ds, (8)

βn =
∫ 0

−T
b2(s)un (s)ds, (9)

the Eqs. (6) and (7) can be written by
u′n(t)+λ

2
n un(t) = νa1(t)αn, t > 0, u′′n(t)+λ

2
n un(t) = νa2(t)βn, t < 0. (10)

We solve Eqs. (10) by the method of variation of arbitrary constants
un(t) = An exp

{
−λ

2
n t
}
+η1n(t), t > 0, (11)

un(t) =Cn cosλnt +Dn sin λnt +η2n(t), t < 0, (12)

where An, Bn, Cn are while arbitrary constants to be determined and
η1n(t) = ναnhn(t), η2n(t) = νβnδn(t),
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hn(t) =
∫ t

0
exp
{
−λ

2
n (t− s)

}
a1(s)ds, δn(t) =

1
λn

∫ t

0
sinλn(t− s)a2(s)ds.

From the statement of the problem it follows that U(0+ 0,x) = U(0− 0,x);
Ut(0+0,x) =Ut(0−0,x). Hence, taking into account (5), we obtain

un(0+0) =

√
2
l

∫ l

0
U(0+0,x)sin µnxdx =

=

√
2
l

∫ l

0
U(0−0,x)sin µnxdx = un(0−0).

(13)

Differentiating (5) one times with respect to t similarly (13), we derive

u′n(0+0) =

√
2
l

∫ l

0
Ut(0+0,x)sin µnxdx =

=

√
2
l

∫ l

0
Ut(0−0,x)sin µnxdx = u′n(0−0).

(14)

From (11) and (12), taking into account (13) and (14), we obtain that Bn = An,
Cn =−λn An. Then functions (11) and (12) take the form

un(t) = An exp
{
−λ

2
n t
}
+η1n(t), t > 0, (15)

un(t) = An cosλnt−λnAn sinλnt +η2n(t), t < 0. (16)

Taking into account (5), the condition (2) takes the following form∫ T

0
un(t)dt =

√
2
l

∫ l

0

∫ T

0
U(t,x)dt sin µnxdx =

√
2
l

∫ l

0
ϕ(x)sin µnxdx = ϕn, (17)

where ϕn =

√
2
l

∫ l

0
ϕ(x)sin µnxdx, n = 1,2, . . .

To find the unknown coefficients An in (15) and (16), we use the condition (17)∫ T

0
un(t)dt =

∫ T

0

[
An exp

{
−λ

2
n t
}
+η1n(t)

]
dt =

=−An

λ 2
n

[
exp
{
−λ 2

n T
}
−1
]
+ξ1n(t) = ϕn,

(18)

where ξ1n =
∫ T

0
η1n(t)dt.

Since 0 < T < ∞, 0 < λ 2
n < 1, we have exp

{
−λ 2

n T
}
6= 1. So from Eq. (18)

An is uniquely determined by

An =
λ 2

n

σn

(
ϕn−ξ1n

)
, where σn = 1− exp

{
−λ

2
n T
}
.

Substituting the founded values An into formulas (15) and (16), we get

un(t) =
λ 2

n

σn
(ϕn−ξ1n)exp

{
−λ

2
n t
}
+η1n(t), t > 0, (19)

un(t) =
λ 2

n

σn
(ϕn−ξ1n) [cosλnt−λn sinλnt]+η2n(t), t < 0. (20)
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Taking into account that ξ1n =
∫ T

0
η1n(t)dt, η1n(t) = ναnhn(t) and

η2n(t) = νβnδn(t), we rewrite the formulas (19) and (20) as follows

un(t) = ϕnM1n(t)+ναnM2n(t), t > 0, (21)

un(t) = ϕnN1n(t)−ναnN2n(t)+νβnδn(t), t < 0, (22)

where

M1n(t) =
λ 2

n

σn
exp
{
−λ

2
n t
}
, M2n(t) = hn(t)−M1n(t)

∫ T

0
hn(t)dt,

N1n(t) =
λ 2

n

σn
[cosλnt−λn sinλnt] , N2n(t) = N1n(t)

∫ T

0
hn(t)dt,

0 < λn =

√
µ2

n

1+µ2
n
< 1, µn =

πn
l
.

Substituting (21) into (9) and (22) into (10), we obtain the countable system of
two algebraic equations (CSTAE) of variables αn and βn{

αn (1−νP2n) = ϕnP1n,
αnνQ2n +βn (1−ν Q3n) = ϕnQ1n,

(23)

where P1n =
∫ T

0
b1(s)M1n(s)ds, P2n =

∫ T

0
b1(s)M2n(s)ds, Q1n =

∫ 0

−T
b2(s)N1n(s)ds,

Q2n =
∫ 0

−T
b2(s)N2n(s)ds, Q3n =

∫ 0

−T
b2(s)δn(s)ds.

For solvability of CSTAE (23) we impose the following condition

ν = νn 6=
1

P2n
, ν = νn 6=

1
Q3n

. (24)

We subtract the values ν1n =
1

P2n
and ν2n =

1
Q3n

of spectral parameter ν from

the set of real numbers R = (−∞;∞). The obtained set Λ = R\{ν1,ν2} is called the
set of regular values of the parameter ν . For all values ν ∈ Λ the condition (24) is
fulfilled. For regular values of the kernel of the mixed integro-differential Eq. (1),
first we solve CSTAE (23), and then problem (1)–(3). Substituting the solution of
CSTAE (23)

αn = ϕn
P1n

1−νP2n
, βn = ϕn

[
Q1n

1−νQ3n
− Q2n

1−νQ3n
· P1n

1−νP2n

]
in (21) and (22), we derive

un(t,ν) = ϕnΦn(t,ν), t > 0, (25)

un(t,ν) = ϕnΨn(t,ν), t < 0, (26)

where
Φn(t,ν) = M1n(t)+νM2n(t)

P1n

1−νP2n
,
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Ψn(t,ν) = N1n(t)−νN2n(t)
P1n

1−νP2n
+νδn(t)

[
Q1n

1−νQ3n
− Q2n

1−νQ3n
· P1n

1−νP2n

]
.

Now we substitute (25) and (26) into series (4) and we get

U(t,x,ν) =

√
2
l

∞

∑
n=1

ϕnΦn(t,ν)sin µnx, t > 0, (27)

U(t,x,ν) =

√
2
l

∞

∑
n=1

ϕnΨn(t,ν)sin µnx, t < 0. (28)

The Justification of the Solvability of the Boundary Value Problem
(1)–(3). We show that under certain conditions with respect to the function ϕ(x) the
series (27) and (28) converge absolutely and uniformly. Indeed, in the formulation
of the problem the functions M1n(t), M2n(t) are uniformly bounded on the segment
[0; T ], and the functions N1n(t), N2n(t) and δn(t) are uniformly bounded on the
segment [−T ;0]. We consider such regular values of the spectral parameter ν ∈ Λ,
for which

∣∣Φn(t,ν)
∣∣< ∞ for all t ∈ [0; T ] and

∣∣Ψn(t,ν)
∣∣< ∞ for all t ∈ [−T ;0]. We

note that 0 < λn < 1. So for any natural n from the (25) and (26) we have estimates∣∣un(t)
∣∣≤C1n

∣∣ϕn
∣∣, (29)∣∣u′′n(t)∣∣≤C2nϕn
∣∣, (30)

where
C1n = max

{
max

t∈[0, T ]

∣∣Φn(t, ν)
∣∣; max

t∈[−T, 0]

∣∣Ψn(t,ν)
∣∣},

C2n = max
{

max
t∈[0, T ]

∣∣Φ′′n(t,ν)∣∣; max
t∈[−T, 0]

∣∣Ψ′′n(t,ν)∣∣}.
Condition A. Suppose that the following condition is satisfied:(

∞

∑
n=1

∣∣Cin
∣∣2)1/2

< ∞, i = 1,2.

Condition B. Suppose that the function ϕ(x)∈C2[0; l] on the segment [0; l] has
piecewise-continuous third-order derivatives and ϕ(0) = ϕ(l) = ϕxx(0) = ϕxx(l) = 0.

Then by integrating by parts 3 times with respect to the variable x in the integral

ϕn =

(
2
l

)1/2 ∫ l

0
ϕ(x)sin

πn
l

xdx

we get

ϕn =−
(

l
π

)3 pn

n3 , (31)

∞

∑
n=1

p2
n ≤

4
l2

∫ l

0

[
ϕxxx(x)

]2dx < ∞. (32)

We note that formula (32) represents the Bessel inequality. Using (31) and
(32), taking into account (29) and (30), now we can show that the series (27) and
(28) converge absolutely and uniformly in the domain Ω. In this case termwise
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differentiation of these series (27) and (28) with respect to variables t and x
is possible and the obtaining series will converge absolutely and uniformly in the
domain Ω.

Indeed, using (29), (31) and (32) and applying the Minkowski and Hölder in-
equalities, for series (27) and (28) in the domain Ω the following estimate is obtained:∣∣U(t,x)

∣∣=√2
l

∞

∑
n=1

∣∣un(t)
∣∣∣∣∣sin µnx

∣∣∣≤√2
l

∑
∞
n=1

∣∣C1n
∣∣2√ ∞

∑
n=1

∣∣ϕn
∣∣2 ≤

≤ γ1
∞

∑
n=1

1
n3

∣∣pn
∣∣≤ γ1

√
∞

∑
n=1

1
n6

√
∞

∑
n=1

∣∣pn
∣∣2 ≤

≤ 2γ1

l

√
∞

∑
n=1

1
n6

√∫ l

0
[ϕxxx(x)]

2 dx < ∞,

(33)

where γ1 =

√
2
l

∞

∑
n=1

∣∣C1n
∣∣2( l

π

)3

.

From (33) it follows that series (27) and (28) converge absolutely and
uniformly in domain Ω. Formally differentiating functions (27) and (28) we obtain

Utt(t,x,ν) =

√
2
l

∞

∑
n=1

ϕnΦ
′′
n(t,ν)sin µnx, t > 0, (34)

Utt(t,x,ν) =

√
2
l

∞

∑
n=1

ϕnΨ
′′
n(t,ν)sin µnx, t < 0, (35)

Uxx(t,x,ν) =−
√

2
l

∞

∑
n=1

µ
2
n ϕnΦn(t,ν)sin µnx, t > 0, (36)

Uxx(t,x,ν) =−
√

2
l

∞

∑
n=1

µ
2
n ϕnΨn(t,ν)sin µnx, t < 0, (37)

Uttxx(t,x,ν) =−
√

2
l

∞

∑
n=1

µ
2
n ϕnΦ

′′
n(t,ν)sin µnx, t > 0, (38)

Uttxx(t,x,ν) =−
√

2
l

∞

∑
n=1

µ
2
n ϕnΨ

′′
n(t,ν)sin µnx, t < 0, (39)

where µn =
πn
l
.

Analogously to (33), taking into account formulas (30)–(32) and applying the
Minkowski and Hölder inequalities, for the series (34) and (35) in domain Ω we
obtain the following estimate:∣∣Utt(t,x)

∣∣=√2
l

∞

∑
n=1

∣∣u′′n(t)∣∣∣∣∣sin µnx
∣∣∣≤√2

l

∞

∑
n=1

∣∣C2n
∣∣2√ ∞

∑
n=1

∣∣ϕn
∣∣2 ≤

≤ γ2
∞

∑
n=1

1
n3

∣∣pn
∣∣≤ 2γ2

l

√
∞

∑
n=1

1
n6

√∫ l

0
[ϕxxx(x)]

2 dx < ∞,

(40)

where γ2 =

√
2
l

∞

∑
n=1

∣∣C2n
∣∣2( l

π

)3

.
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Analogously, for the series (36) and (37) in the domain Ω we get the estimate∣∣Uxx(t,x)
∣∣= √2π2

l2
√

l

∞

∑
n=1

n2
∣∣un(t)

∣∣∣∣∣sin µnx
∣∣∣≤ γ3

√
∞

∑
n=1

n2
∣∣ϕn
∣∣2 ≤

≤ γ3
∞

∑
n=1

1
n

∣∣pn
∣∣≤ 2γ3

l

√
∞

∑
n=1

1
n2

√∫ l

0
[ϕxxx(x)]

2 dx < ∞,

(41)

where γ3 =

√
2
l

∞

∑
n=1

∣∣C1n
∣∣2 π2

l2 .

Similarly, for the series (38) and (39), as in the estimates (40) and (41) in the
domain Ω, we easily obtain that ∣∣Uttxx(t,x)

∣∣< ∞.

Consequently, the function U(t,x) on Ω, defined by the series (27) and (28),
satisfies the conditions of the problem.

To establish the uniqueness of the solution, we show that under the zero inte-

gral condition
∫ T

0
U(t,x)dt = 0, 0≤ x≤ l, the boundary value problem (1)–(3) has

only the trivial solution. We suppose that ϕ(x)≡ 0. Then ϕn = 0 and from (27) and
(28) in domain Ω we get ∫ l

0
U(t,x)sin

πn
l

xdx, n = 1,2, . . .

Hence, by virtue of the completeness of systems of eigenfunctions

{√
2
l

sin(πn/l)x

}
in L2[0; l] we conclude, that U(t, x)≡ 0 for all x ∈ [0; l] and t ∈ [−T ; T ].

Consequently, for regular values of the spectral parameter ν ∈ Λ the problem
(1)–(3) has a unique solution in domain Ω.

Thus it is proved that the following theorem holds.
T h e o r e m . Let the conditions A and B are satisfied. Then for regular

values of the spectral parameter ν ∈ Λ the problem (1)–(3) is uniquely solvable in
domain Ω.
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